Oxide Based Thermoelectric Materials for Large Scale Power Generation

نویسنده

  • Yang Song
چکیده

The thermoelectric (TE) devices are based on the Seebeck and Peltier effects, which describe the conversion between temperature gradient and electricity. The effectiveness of the material performance can be described by its figure of merit, ZT, which is defined as ZT = T , where a is the Seebeck coefficient of the material, a is the electrical conductivity and K is the total thermal conductivity, and T is the temperature. In the past, TE power generation has been confined to niche applications. It has been technically and economically more efficient to produce electricity using traditional generators rather than a thermoelectric generator. However, recent significant advances in the scientific understanding of quantum well and nanostructure effects on TE materials properties and modem thin layer and nanoscale manufacturing technologies have combined to create advanced TE materials with high figure of merit (>3). An engineering analysis performed in this study identified large scale waste heat recovery opportunities that are suitable for advanced TE power generation systems. Thesis Supervisor: Harry L. Tuller Title: Professor of Ceramics and Electronic Materials

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feasibility of large-scale power plants based on thermoelectric effects

Heat resources of small temperature difference are easily accessible, free and enormous on the Earth. Thermoelectric effects provide the technology for converting these heat resources directly into electricity. We present designs for electricity generators based on thermoelectric effects that utilize heat resources of small temperature difference, e.g., ocean water at different depths and geoth...

متن کامل

Load Frequency Control Based on Improved Fuzzy Controller in the Microgrid with Thermoelectric Generator

The Microgrid is a small-scale controlled power system, which can be used in islanded mode or in a grid-connected one to provide power. In the islanded Microgrid, the system frequency will be affected severely by the smallest disturbance which can happen due to light inertia in the system. In the independent Microgrid, several generation sources such as solar, wind, and so on can be considered....

متن کامل

Enhanced n-type thermopower in distortion-free LiMn2O4

Thermoelectric devices for power generation and solid-state refrigeration represent an important technology that could potentially offer long term solid-state solutions for increased energy efficiency and address environmental concerns. However, the efficiency of existing thermoelectric materials, limited temperature stability and potential scarcity of key elements, such as Te, have motivated r...

متن کامل

Thermoelectric energy conversion using nanostructured materials

High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics of lowand mid-temperature thermoelectric materials. We show that as long as an appreciable temperature difference can be created over a short thermoelectric leg, good pow...

متن کامل

Crystal Structure, Cation Occupancy and Vacancy Ordering in Thermoelectric (1-x)SrTiO3-xLa1/3NbO3: A STEM-EELS Study

Thermoelectric energy conversion is widely recognized as a promising technology both for electric power generation in terms of waste heat recovery and for cooling of various electronic devices [1]. SrTiO3 based perovskites are among a number of candidate materials for such thermoelectric applications [2]. For the first time, we demonstrate the successful synthesis of (1-x)SrTiO3-xLa1/3NbO3 cera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009